166 research outputs found

    Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

    Full text link
    We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the scope of the family of SAP methods to allow iteration-index-dependent variable strings and weights and term such methods dynamic string-averaging projection (DSAP) methods. The bounded perturbation resilience of DSAP methods is relevant and important for their possible use in the framework of the recently developed superiorization heuristic methodology for constrained minimization problems.Comment: Computational Optimization and Applications, accepted for publicatio

    Digital Topology Java Applet

    Get PDF
    We present here a java applet, accessible through the World Wide Web, which allows to apply to a binary digital image a series of topological algorithms for image processing

    The Need for Effective Early Behavioral Family Interventions for Children with Attention Deficit Hyperactivity Disorder (ADHD)

    Get PDF
    There is a pressing need for the development of effective early family intervention programs for children showing Attention Deficit Hyperactivity Disorder (ADHD) behaviours with Conduct Disorder (CD) or Oppositional Defiant Disorder (ODD) behaviours. Previous research has indicated that children with ADHD are at risk of developing comorbid CD or ODD behaviours. In addition, it has been shown that ODD or CD behaviours in childhood tend to persist and to have adverse effects on later social adjustment. However, ODD or CD behaviours are not necessary concomitants of ADHD, and it has been demonstrated that behavioural intervention can have both short- and long term beneficial effects for children showing early signs of ODD or CD behaviours. In short term, behavioural family interventions may be able to reduce oppositional behaviour, particularly in the preschool years. In the long term, early intervention has shown to reduce the incidence of later antisocial behaviour in children at risk for this developmental trajectory. In this paper, it will be argued that behavioural family interventions have not been effectively utilised or promulgated in the community for children with ADHD despite the demonstrated efficacy of these types of interventions. A model of a multilevel system of intervention that can be tailored to the individual family’s needs is presented

    Randomized Kaczmarz solver for noisy linear systems

    Get PDF
    The Kaczmarz method is an iterative algorithm for solving systems of linear equations Ax=b. Theoretical convergence rates for this algorithm were largely unknown until recently when work was done on a randomized version of the algorithm. It was proved that for overdetermined systems, the randomized Kaczmarz method converges with expected exponential rate, independent of the number of equations in the system. Here we analyze the case where the system Ax=b is corrupted by noise, so we consider the system where Ax is approximately b + r where r is an arbitrary error vector. We prove that in this noisy version, the randomized method reaches an error threshold dependent on the matrix A with the same rate as in the error-free case. We provide examples showing our results are sharp in the general context

    Interior Structure of a Charged Spinning Black Hole in (2+1)(2+1)-Dimensions

    Full text link
    The phenomenon of mass inflation is shown to occur for a rotating black hole. We demonstrate this feature in (2+1)(2+1) dimensions by extending the charged spinning BTZ black hole to Vaidya form. We find that the mass function diverges in a manner quantitatively similar to its static counterparts in (3+1)(3+1), (2+1)(2+1) and (1+1)(1+1) dimensions.Comment: 5 pages, 2 figures (appended as postscript files), WATPHYS-TH94/0

    Reusing integer homology information of binary digital images

    Get PDF
    In this paper, algorithms for computing integer (co)homology of a simplicial complex of any dimension are designed, extending the work done in [1,2,3]. For doing this, the homology of the object is encoded in an algebraic-topological format (that we call AM-model). Moreover, in the case of 3D binary digital images, having as input AM-models for the images I and J, we design fast algorithms for computing the integer homology of I ∪J, I ∩J and I ∖J

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity

    Get PDF
    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements
    corecore